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Simulation of flow around a thin, flexible obstruction by means
of a deforming grid overlapping a fixed grid
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SUMMARY

This paper presents a numerical method for simulation of coupled flows, in which the fluid interacts
with a thin deformable solid, such as flows in cardiovascular valves. The proposed method employs an
arbitrary Lagrangian–Eulerian (ALE) method for flow near the solid, embodied in the outflow domain
in which the mesh is fixed. The method was tested by modelling a two-dimensional channel flow with
a neo-Hookean obstacle, an idealization of the coupled flow near a cardiovascular valve. The effects of
the Reynolds number and the dimensionless elastic modulus of the material on the wall shear stress,
the size of the downstream reverse flows, and the velocity and pressure profiles were investigated. The
deformation of the obstacle, the pressure drop across the obstacle, and the size of the top reverse flow
increased as the Reynolds number increased. Conversely, increasing the elastic modulus of the obstacle
decreased the deformation of the obstacle and the size of the top reverse flows, but did not affect the
pressure drop across the obstacle over the range studied. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid–structure interaction problems, also called coupled flow problems, are an extremely challeng-
ing and active area of research in computational fluid mechanics, including bio-fluid mechanics.
The mechanical interaction between a deformable solid and a fluid presents a unique set of chal-
lenges during modelling because of the coupling between the two materials. The deformation of
the solid cannot be determined without knowing the stresses from the fluid, and the flow field
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of the fluid cannot be determined without knowing the position of the solid. The two physical
problems must be solved simultaneously to obtain meaningful results. Coupled flow problems
range from the very large length scale of aeroelasticity problems [1] to the very small length scale
of microfluidics problems. Within biomechanics, examples of fluid–structure interaction include
flows interacting with iris [2], vessel wall [3, 4], valve leaflet [5–8], and ventricular wall [9].

Because the fluid domain is not known a priori, computational models for coupled flows must
include a mechanism to adjust the fluid domain to conform to the deforming solid. Two fundamental
strategies exist for mesh-based methods: deforming-grid methods or fixed-grid methods.

In deforming-grid methods, the mesh fills the fluid domain and deforms in response to changes
in the shape of fluid domain. A procedure is needed to account for the motion of the finite-element
nodes as they move to conform to the changing domain shape. The most popular strategy is prob-
ably the so-called arbitrary Lagrangian–Eulerian (ALE) method [10–12] (also known as domain
deformation or pseudo-solid), in which finite-element nodes move affinely with the deformation
of a fictitious solid occupying the fluid domain. Thus, as the fluid domain deforms, the imagi-
nary solid also deforms, and the finite-element mesh adjusts accordingly. The ALE approach is
highly successful for relatively small domain deformations but for large domain deformations,
the mesh can get distorted severely, which introduces numerical errors and requires a costly
remesh [13].

A contrasting approach is the fixed-grid method, in which the fluid domain is artificially placed
onto a fixed grid, usually a structured grid to allow use of more efficient linear solvers. The fluid–
solid boundaries are not enforced explicitly as in the deforming-grid methods, but are instead
imposed implicitly as a constraint on the flow field. Flow results outside the true physical domain
are then discarded. The ‘immersed boundary’ method of Peskin [14], in which the solid is modelled
as a series of point interactions governed by finite-difference interpolation rules, is a well known
and popular example, having been used in various forms by others as well [14, 15]. Formal
introduction of the constraint via a distributed Lagrange multiplier (DLM) has also been highly
successful [16, 17]. The DLM approach has the advantage that the constraint is applied continuously
rather than pointwise, and it can be incorporated naturally into a finite-element framework.

Coupled flows in cardiovascular valves present additional challenges for both approaches. The
large displacement of the valve leads to large mesh deformation in a deforming-grid model, and
requires multiple remeshes at prohibitive computational cost. In contrast, the fixed-grid approach
does not require remeshing, but it is poorly suited to very thin structures, which produce large
pressure drops over small distances. The pressure drop across the valve must be accommodated
by a large pressure gradient in the fixed grid. Because the valve does not conform to the grid,
the entire pressure drop must be generated within the grid elements that contain the valve. The
steep gradient in a fluid problem is both physically and numerically unattractive. If the valve is
thinner than a fixed grid element containing it, the large pressure gradient within one element may
destabilize the calculation.

Baaijens and coworkers [18] have developed a series of DLM-based codes for valve mechanics,
and they have recently developed a hybrid scheme [5] in which an otherwise fixed grid is remeshed
in the vicinity of the deforming valve. The local remesh is considerably less expensive than a global
remesh, and the problem of steep pressure gradients is eliminated because the valve does not cut
any fixed-grid element. However, there are two major issues that are not addressed by this approach.
First, the remesh, which changes the distribution of the elements, may not conserve mass globally
because conservation of mass is enforced only in an elemental sense. Second, and perhaps more
important in view of the overall goal of modelling extremely complex three-dimensional flows,
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the loss of structure associated with the remesh severely limits the potential to employ a high-
performance structured-grid solver for the fixed grid.

Based on these observations, we conclude that a true fixed-grid approach is desirable for
incorporating the effect of the solid on the flow field as a whole, but a deforming-grid approach is
desirable in the region near the valve so as to conform to the valve geometry. The objective of this
work was to develop and test such a scheme. To test the applicability of this scheme in modelling
valvular haemodynamics, the mechanics of a coupled flow in a two-dimensional channel with a
thin flexible neo-Hookean obstacle was investigated.

2. GOVERNING EQUATIONS AND DOMAIN DECOMPOSITION

2.1. Governing equations

The flow of a viscous, incompressible fluid around a submerged object (Figure 1) is represented
by the Navier–Stokes equations. Conservation of momentum is given by

�F

(
�v
�t

+ v · ∇v
)

− ∇ · T= 0 (1)

T≡−pI + �(∇v + ∇vT) (2)
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Figure 1. Configuration of the numerical domain used to model coupled two-dimensional channel
flow. Part of the numerical region in the vicinity of the valve is shown. The regions I, II, and III
correspond to the valve, inner fluid, and outer fluid regions. � is the interface between the inner and
outer regions where velocity and pressure matching is imposed implicitly, and � is the interface
between the inner and valve regions where the no-slip boundary condition and continuity of stress

in the liquid and solid are imposed explicitly.
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where T is the viscous stress in the fluid, p is the hydrostatic pressure, v is the fluid velocity, �F
is the fluid density, and � is the fluid viscosity. Because the fluid is taken to be incompressible,
conservation of mass is represented by the continuity equation:

∇ · v= 0 (3)

At the interface between the flow and the solid, the velocity of the solid and the velocity of the
liquid are the same, i.e. there is no slip. Additionally, the stresses of the flow and solid must
balance, that is

nF · T=nS · � (4)

Here, � is the Cauchy stress in the solid, and nF and nS are the normal to the surface of fluid and
solid, respectively. The Cauchy stress � depends on the constitutive nature of the material; in this
work, the solid is modelled as neo-Hookean [19]:

�= −�I + E(FFT) (5)

where F is the deformation gradient given by F= �(x)/�X, where x is the deformed position of
the solid and X is the undeformed position. The quantity � is the isotropic part of the elastic stress
in the solid, equivalent to pressure in a fluid, and is given by

�= E

1 − 2�
ln(detB) (6)

where B is the Finger tensor given by B=FFT. In this study, Poisson’s ratio � is set as 0.491 for
all the cases to represent a nearly incompressible material. The conservation of momentum for the
solid is given by Cauchy’s equation of stress:

�S
D2x
Dt2

− ∇ · � = 0 (7)

where �S is the density of the solid. Notice that when the solid is nearly incompressible or the
deformation is small, detB is close to 1. In this circumstance, the Taylor expansion of ln(detB)

gives

ln(detB) ≈ detB − 1 (8)

This implies that � in Equation (6) can be approximated by (E/(1−2�))(detB−1) provided that the
dilatation of material is small. This substitution accelerates the numerical simulation considerably
and was used when |detB − 1|�0.1.

2.2. The dimensionless governing equations

The governing equations were nondimensionalized using the following reference coefficients:

v=Ubv∗, X= LX∗, x= Lx∗, t = L

Ub
t∗, p= �FU

2
b p

∗ (9)
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Here Ub is the bulk velocity of the fluid, L is the length of the valve, and �F is the density of the
fluid. Thus, the dimensionless governing equation for the fluid reads

�v∗

�t∗
+ v∗ · ∇v∗ + ∇ p∗ − 1

Re
∇ · (∇v∗ + ∇v∗T) = 0 (10)

∇ · v∗ = 0 (11)

where Re is the Reynolds number. From Equations (5) and (7), the governing equation for the
solid reduces to

D2x∗

Dt∗2
− Ẽ∇ ·

[
B∗ − ln(detB∗)

1 − 2�
I
]

= 0 (12)

where �S is the density of the solid and the dimensionless modulus Ẽ is given by E/�SU
2
b .

For the sake of convenience, the superscript * is dropped in the rest of this paper. The dimen-
sionless governing equations are written as

�v
�t

+ v · ∇v + ∇ p − 1

Re
∇ · (∇v + ∇vT) = 0 (13)

∇ · v= 0 (14)

for the fluid and

D2x
Dt2

− Ẽ∇ ·
[
B − ln(detB)

1 − 2�
I
]

= 0 (15)

for the solid.

3. NUMERICAL METHOD

3.1. Domain decomposition

The numerical domain was decomposed into three parts: the outer fluid, the inner fluid, and the
solid (obstacle). The configuration of the numerical domain is shown in Figure 1. Region I in
Figure 1 corresponds to the solid, whose motion was described by Equation (15). The inner fluid
region (Region II) corresponds to the fluid near the solid and deforms with the solid. To capture
small-scale structures accurately and calculate the pressure and wall shear stress, the mesh should
be fine enough in the vicinity of solid. Van Loon et al. [5] used local remeshing near the solid to
capture this structure [5]. We suggest that an inner domain that deforms with the valve can capture
the small structures near the valve without remeshing.

The outer fluid region (Region III) corresponds to the fluid in the channel. Thus, part of the
outer fluid region was overlapped by the other two regions. Boundary conditions at the inlet, outlet,
and wall were applied to the outer fluid region to model the flow in the channel. An additional
constraint was imposed at the inner fluid boundary to match the fluid velocities and pressures
between the inner and outer regions, as explained below.

The fluid and solid are connected on the interface without separating. To be able to capture the
arbitrary bending of solid, the inner domain may not keep orthogonality. Thus, we take advantage
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of finite-element methods, by which the cross terms that appear in the finite volume or finite-
difference formulations due to the nonorthogonal meshes can be avoided. Moreover, the surface
integral along the fluid–solid interface can be cancelled out during the assembly of the stiffness
matrix by using the finite-element methods. The advantage of this treatment is that the calculation
for the surface force on the fluid–solid interface is not necessary. For these reasons, we solve
the inner domain by using a finite-element scheme. Compared with the finite-element methods,
finite volume methods represent higher efficiency on the simulation of the fluids, particularly
for turbulent fluids. The reason partially arises from the time-derivation terms. By using the
finite volume scheme, the time-derivative terms are assembled to the diagonal components of the
Jacobian or stiffness matrix. Thus, small time steps efficiently optimize the eigenvalues of matrix
and accelerate the convergence. For these reasons, we calculated the outer domain using the finite
volume scheme.

3.2. Overset ALE

The coupling between the inner fluid region and the fixed outer fluid region was done implicitly
using the ghost points method of Henshaw and Schwendeman [20, 21]. The velocities and pressure
in the inner domain were enforced to match with those in the outer domain on the surface �,

vo − vi = 0 and po − pi = 0 when X∈ � (16)

Lagrange interpolating polynomials are utilized to achieve this goal. As shown in Figure 2, the
velocities and pressure on the point I1 are calculated by velocities and pressure on O1 and O2.
vI1 is defined by (L2vO1 + L1vO1)/(L1 + L2). In the same way, the values on the points I6, O3,
and O4 are calculated by the corresponding matching points in the outer or inner layer.

Meanwhile, since the inner mesh deforms with the valve, the arbitrary ALE method was used
to account for the effect of the moving mesh on the momentum equations. The conservation of
momentum for the inner fluid was written as

�v
�t

+ (v − vmesh) · ∇v + ∇ p − 1

Re
∇ · (∇v + ∇vT) = 0 (17)

where vmesh is the velocity of the inner mesh. The additional term vmesh accounts for the changes
of the momentum flux at a mesh point due to the motion of the inner grid. The only constraint on

O1 O2 O3 O4 O5 O6

1L 2L

I1   I 2 I3 I4 I5 I6

Figure 2. Configuration of the numerical meshes. The points marked with I or O stand for the inner or
outer domains, respectively. The white circles connected by solid line are calculated through the numerical

method proposed by this paper. The black circles are ghost points.
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mesh motion was to guarantee that the inner and valve regions attach without overlap or separation.
In this study, each node of the inner fluid mesh was assigned the same displacement as the nearest
node in the solid mesh.

In summary, the complete set of equations for the three regions is as follows:
Outer fluid:

�v
�t

+ v · ∇v + ∇ p − 1

Re
∇ · (∇v + ∇vT) = 0 (18)

∇ · v= 0 (19)

Inner fluid:

�v
� t

+ (v − vmesh) · ∇v + ∇ p − 1

Re
∇ · (∇v + ∇vT) = 0 (20)

∇ · v= 0 (21)

Solid valve:

D2x
Dt2

− Ẽ∇ ·
[
B − ln(detB)

1 − 2�
I
]

= 0 (22)

Inner–outer velocity matching:

vo − vi = 0 and po − pi = 0 (23)

When detB is close to 1, we approximate ln(detB)/(2� − 1) by (detB − 1)/(2� − 1).
The unknowns were the inner and outer fluid velocities and pressures, and the displacements

and isotropic stress in the solid valve. At the solid–inner fluid boundary, the no-slip boundary
condition was enforced strongly.

3.3. Numerical strategy

The equations governing the inner fluid and the solid were solved using the standard Galerkin
finite-element method with piecewise biquadratic basis functions for the fluid velocity and solid
displacements, and discontinuous piecewise bilinear basis functions for pressure in the liquid and
isotropic stress in the solid. The resulting matrix problem at each Newton iteration step was solved
using GMRES with ILUT preconditioning [22].

The outer fluid was solved using the finite volume method. In the form of finite volume scheme,
the Navier–Stokes equation is

�v
�t

+
∫

�V
(n · v)v +

∫
�V

pn − 1

Re

∫
�V

n · (∇v + ∇vT) dv + 	 = 0 (24)

∫
�V

n · v= 0 (25)

where V is the volume, �V is the boundary of volume V , and n is the normal direction of
the surface of �V . The second-order backward Euler scheme was utilized for time-derivative
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discretization,

�v
�t

≈ 3vk − 4vk−1 + vk−2

2�t
(26)

where vk is the velocity at the kth time step, and vk−1 and vk−2 are the velocities at the two
preceding time steps, and �t is the time-step size. The second-order centred difference was used
for the spatial-derivative discretization, i.e. the derivative at the i th node along the x direction was
approximated as

�v
�x

≈ vi+1 − vi−1

2�x
(27)

where vi−1 is the velocity at the previous node and vi+1 is the velocity at the next one. The
discretized equations were solved by using a lower–upper symmetric Gauss–Seidel (LU-SGS)
scheme [23].

At the each pseudo-time step, the velocities and pressure at the specific point of outer domain
covered by the inner domain are updated by the extrapolation of the corresponding data in the
inner domain.

3.4. Numerical set-up

A two-dimensional channel with a flexible obstacle was simulated. The height and the length of
the channel were taken to be 2L and 40L . The obstacle was placed at the midpoint of the channel
along the flow direction, i.e. at a distance of 20L from the inlet. The length of the obstacle is
L or 1.4L . The obstacle was modelled as a neo-Hookean solid with Poisson’s ratio 0.491. The
configuration of the numerical set-up is shown in Figure 1, and the parameters used are listed in
Table I.

To investigate the effect of Reynolds number and elastic modulus on the interaction between
the valve and the fluid, the governing equations were solved for two sets of conditions. In the
first set, the dimensionless elastic modulus was fixed at 631.23 (this number was selected so that
the dimensional elastic modulus was 1500 Pa for a fluid with property of water at 20◦C) and the
Reynolds number was varied from 350 to 550. In the second set, the Reynolds number was fixed
at 500 while the dimensionless elastic modulus of valve is varied from 500 to 2000. To examine

Table I. Parameters used to study coupled flow in a two-dimensional channel.

Parameter Value

Viscosity of fluid 1.002× 10−3 N s/m2

Height of valve 0.01m
Time-step size 0.01L/Ub
Density of fluid 1× 103 kg/m3

Density of valve 1.2× 103 kg/m3

Valve element size, in units of L 0.02× 0.04
Inner fluid element size, in units of L 0.02× 0.04
Outer fluid mesh discretization size, in units of L 0.1× 0.04
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the long-time statistical behaviour of solid and fluid, velocities, pressure, and deformation data
were averaged over 6000 numerical steps.

4. RESULTS

The solutions of the governing equations were checked for mesh convergence. Figure 3 shows the
velocity profile across the channel at a distance L downstream from the valve for Re= 500 and
dimensionless elastic modulus Ẽ = 631.23 for two meshes: one whose element dimension along
the flow direction is half of that of the other. The agreement between the two velocity profiles
indicates that the solution of the governing equations is independent of the mesh size for the mesh
used. The mesh resolution of the results was further examined in Figure 4, in which the distribution
of the time-averaged wall shear stress ��v/�X|wall is plotted.

The time-averaged wall shear stresses on the lower and upper walls are shown in Figure 4. The
solid lines are fine mesh results and the squares are the coarse mesh results. The discontinuity
in the lower-wall curve is due to the presence of the valve. There are two reverse-flow regions
downstream of the valve, one attached to the bottom wall of the channel and the solid, and the
other attached to the top wall of the channel. As seen in Figure 4, the reverse-flow region, where
the wall shear stress on the lower wall is negative, moved downstream with rising Reynolds
number. When the dimensionless elastic modulus was lowered, the solid valve deflected more,
and the size of reverse-flow region shrank, as seen by comparing the reverse-flow regions in
Figures 4(b)–(d).
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Figure 3. Velocity in the flow direction at a distance L downstream of the valve. Velocity profiles for two
different meshes, one whose finite elements and control volumes were half the other’s, match indicating

that the solutions are independent of the mesh resolution.
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Figure 4. Wall shear stress along the top and bottom walls at different locations along the flow direction.
The gap in the bottom curve is due to the presence of the valve. The solid lines are the results from
the fine mesh. And the black squares are the results from the coarse mesh: (a) Re= 400, Ẽ = 631.23;

(b) Re= 500, Ẽ = 631.23; (c) Re= 500, Ẽ = 589.15; and (d) Re= 500, Ẽ = 505.

Table II. Size of down-stream reverse fluid and the maximum deformation of
solid for different Reynolds numbers and dimensionless elastic modulus.

Case 1 Case 2 Case 3 Case 4 Case 5

Reynolds number 400 500 500 500 500
Dimensionless elastic modulus 631.23 631.23 589.0 505 400
Size of lower reverse flow 3.2L 2.9L 2.6L 2.5L 2.3L
Size of upper reverse flow 4.7L 5.9L 6.05L 6.34L 8.46L
Maximum deformation of solid 0.28L 0.21L 0.266L 0.43L 1.08L
The length of obstacle L L L L 1.4L
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Figure 5. Effect of Reynolds number and dimensionless elastic modulus on pressure distribution: (a) Re=
400, Ẽ = 631.23; (b) Re= 500, Ẽ = 631.23; (c) Re= 500, Ẽ = 505; and (d) Re= 500, Ẽ = 400.

The sizes for the reverse flow on the lower and upper regions of the channel are listed in Table II.
Results show that the size of the lower recirculation zone falls whereas that of the upper zone rises
when the Reynolds number is raised.

The instantaneous pressure distribution for different Reynolds numbers and dimensionless elastic
modulus are shown in Figure 5. The pressure on either side of the valve does not change much for
the different conditions. However, a large pressure gradient occurs in the top part of the channel
above the valve.

Figure 6 shows the pressure drop vs mass flow rate for different Reynolds numbers. The pressure
drop shown in Figure 6 is the mean pressure difference between the two sides of the valve. Since
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Figure 6. Effect of mass flow rate on pressure drop across the valve. The pressure
drop rises with rising mass flow rate.

the mass flow rate is a linear function of the Reynolds number for two-dimensional channel fluid,
Figure 6 illustrates the relationship between the dimensional pressure drop and Reynolds number.
We plot the dimensional pressure drop with respect to the mass flow rate:

�pd ≈ �FU
2
b = C

�FL2
Q2 (28)

for some constant C . Here, Ub is the bulk velocity of the fluid, Q is the mass flow rate for the two-
dimensional channel flow, �pd is the dimensional pressure drop, and C = 1

4 for the two-dimensional
channel fluid in which the height of the channel is 2L .

The instantaneous horizontal velocity at t = 100 is plotted for different Reynolds numbers and
elastic moduli in Figure 7. The averaged maximum deformation of the solid is listed in Table II.
As expected, both instantaneous field represented by Figure 5 and the averaged data show that
lowering the valve modulus causes the valve to deflect more in the flow direction. However,
raising the flow rate by increasing the Reynolds number and lowering the valve modulus reduces
the deformation of the valve. The dimensionless stress acting on the surface of the valve can be
written as

�=−p + 1

Re
(∇v + ∇vT) (29)

Since �p and Ẽ both scale as U 2
b , the pressure contribution to deflection of the obstacle is

unchanged when Re is changed but Ẽ is not. The viscous stress contribution from (28), however,
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Figure 7. Effect of Reynolds number and dimensionless elastic modulus on the horizontal
component of the fluid velocity: (a) Re= 400, Ẽ = 631.23; (b) Re= 500, Ẽ = 631.23;

(c) Re= 500, Ẽ = 505; and (d) Re= 500, Ẽ = 400.

scales as Ub. So keeping Ẽ constant and increasing Re decreases the viscous stress contribution.
Thus, increasing Re and keeping Ẽ constant decreases the deflection at the obstacle.

Figure 8 shows the mean horizontal velocity profiles at different locations along the channel.
The recirculation zone in the downstream of the solid is clearly evident in the figure.
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Figure 8. Mean horizontal velocities for different Reynolds number and elastic modulus. The velocity
profiles correspond to the locations −9.5L , −5.2L , −2.5L , −0.6L , 0.5L , L , 2.4L , 3.7L , 5L , 7.5L ,
10.5L , and 15L away from the valve: (a) Re= 400, Ẽ = 631.23; (b) Re= 500, Ẽ = 631.23; (c) Re= 500,

Ẽ = 589.15; and (d) Re= 500, Ẽ = 505.

5. CONCLUSION

The method presented above achieved its goal—to solve a coupled-flow problem of a two-
dimensional channel flow with a thin flexible structure. The major advantage of our method
is that no remeshing is necessary to handle the pressure jump due to the solid. This lowers the
computational cost, and will allow us to use a structured-grid solver, which although of small
significance in the two-dimensional case will be valuable in the three-dimensional case. The pres-
ence of the inner mesh makes the pressure and velocity gradients in the outer mesh smooth and
facilitates use of the ghost point approach.

Our ultimate goal is to model motion of bio-artificial and native heart valves, with particular
emphasis on the aortic valve. The cardiac valve problem is much harder than the test problem
posed here, because it involves three-dimensional pulsatile flow and root distension. Also, the
mechanical behaviour of the valve is far more subtle than that of a homogeneous neo-Hookean
solid, as shown previously by numerous experimental and theoretical studies [5, 6, 13]. Baaijens
and co-workers have made considerable progress in incorporating these factors into their models
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[5, 13], and others have examined the mitral valve [6], again accounting for some of the factors
described above. The method described herein provides the potential to solve the cardiac valve
problem with greater efficiency and accuracy than previous models, but the numerical studies
reported here should be taken only as demonstrations of potential, not as a representation of an
actual valvular behaviour.

Two issues will be of particular importance in describing heart valve mechanics. First, the hetero-
geneous, anisotropic, non-linear mechanics of the valve leaflet must be considered. In theory, our
method could accommodate any mechanical model of the leaflet, but selection and implementation
of the model will not be trivial.

The second critical issue that was ignored in the current study is contact between the coapting
valve surfaces. If one restricts a study to steady flow through the open valve as was done here,
contact does not occur, but real valves obviously close as well as open. Contact has been addressed
in fluid-free studies of valve closure and in other biological systems, but the general issue is far
from resolved. Our method will have an additional concern in this context. A natural way to handle
multiple valve leaflets is to have multiple inner meshes, which would each communicate only with
the outer mesh. When two inner meshes start to overlap, a mechanism to combine them and to
allow the two meshes—and particularly the two leaflets—to interact directly with each other is
needed. We consider contact to be the major challenge in the implementation of our method for
full valve simulation.

The physical quantities associated with the coupled flow were calculated and analysed. These
quantities are the pressure drop across the valve, the maximum deformation of the valve, the
velocity and pressure distributions in the fluid, and the wall shear stress. As Reynolds number
rises, the pressure drop across the valve rises, but the size of the lower reverse-flow region and the
maximum deformation of the valve decrease. When the dimensionless elastic modulus is decreased,
the size of the lower reverse-flow region and the maximum deformation of the valve rises.
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